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0. Non-Technical Summary

In this paper, a single device shock model is studied, The
model we consider consists of a single device which experiences
shocks which come from the outside environment. An example is a
sensitive electrical component which occasionally experiences a
large electrical surge due to a malfunction in the electrical system.
Each of these shocks can render the device inoperable, and will at
least make it more likely to fail when the next shock arrives,

It is often important to classify the distribution of the
time to failure for some item, What we attempt to do in this paper
is to examine the one-device shock model and to consider the condi-
tions on the shock process and on the ability of the device to with-
stand shocks which allow us to do such classifying. We try to find
conditions on the process which allow us to place the time-to-failure
distribution of the model into one of the common reliability theory

classifications.

1
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1. Introduction and Summary

In this paper, we shall study a simple one-device shock model and
attempt to establish various qualitative features of its time-to-failure
distribution.

Let L be the time of failure of the device and let H(t) = P(L >
and H(t) = 1 - H(t). We suppose that the device is subject to a series
of shocks whose arrival process is a renewal process with interarrival

distribution F, We further suppose that the device survives the first

k shocks with probability P We assume that 1 =P, >P >P, > .-

k* 0 1 2

[>2]

Then H(t) = ¥ Pk[F(k)(t) - F(k+1)(t))], where F(k) is the kth
k=0

convolution of F,

The general approach of this paper is to make various assumptions
about the {Pk} sequence and the sequence of functions [F(n)(t)-F(n+1)(t)}

or f, the density of F, and to then try to classify H(t), the time to

A e S

failure distribution, The classifications common in reliability theory
include Increasing Failure Rate (IFR) distributions, Increasing Failure
Rate on the Average (IFRA) distributions and distributions with Polya-

Frequency of order 2 (PF2) densities,

cilando ot £ B R

The general setup of this paper largely follows that of [1] and

[3]. 1In [3], the shock renewal process was taken to be Poisson, that

is, F was assumed to be exponential; and in [l], the shock process was

assumed to be non-homogeneous Poisson. In addition, we will apply some

e i e e i s

of our results to the stochastic wear process introduced by Morey in
[6]. A stochastic wear process is an increasing, non-negative stochastic
process, where F(t, x) = P(Zt < x) 1is Totally Positive of order 2 (see

Section 3), We will now discuss some of the results of [3] and of our
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results, If the reader is unfamiliar with some of the terms, he can
refer to Sections 2 and 3,

Below, we note the major results of [5], which can be extended,
in some natural fashion, to the case of a more general renewal process,
Many of the other results, which deal with distribution classifications
such as New Better than Used (NBU) and New Better than Used in Expectation

(NBUE), seem to be valid only for Poisson renewal processes,

[ee]
Suppose that H(t) = ¥ Sl (At)k/kj P where 1=P >P. L >P, > -
k 0="1=%2="""»

k=0

then

AT ek = Pk/Pk-l is decreasing in k = 1, 2, BN A
{Pk’ k >0} is a PF2 sequence, then H is IFR,
1) EE Pi/k is decreasing in k=1, 2 .,.,, then H is IFRA,
iii) If P = Pp1 - By is PF,, then the density of H is PF,.

We will extend each of the above results to a more general renewal
process,

For i), we assume that F(n)(t) - F(n+1)(t) is TP3’ for ii), we

assume that f(n)(t) is TP, and in iii), we assume that f(n)(t) is

TP3.

For i) and ii), no further assumptions are made on the [Pk}

sequence, but for iii), we assume that Py = Pk - Pk 1 is decreasing.
oo
In i), ii) and iii), we assume that 7} (F(n)(t) - F(ml)(t))gn
n=0

is respectively log concave for & € [0,1), IFRA for ¢ € [0,1] and
has a log concave density for ¢ ¢ [0,1].

In each case we get the same result as in [3] and we also show

(n+l)

oo
that the assumptions on the quantity, J] (F(n)(t) - F
n=0

(t)gn are




necessary. We also find a large class of densities which satisfy the

various assumptions,

For the stochastic wear process, we study the hitting time of

Z to some random barrier X. We find necessary conditions on the

t
process Zt and on X so that the distribution of TX’ whe
Ty = inf(t > 0[Z_>X], is either IFR, IFRA or has a PF, den
Z
Suppose Z_  is a stochastic wear process with E[§ Z

concave in t for & € [0,1]. Then if F(t,x) = P(Z2 < x) is TP

and X has a PF, density, or if f(t,x), the density of F(t,x), is

2

TP3 and right continuous in t and X has an IFR distribution, we

show that Tx has an IFR distribution,

Also, if 2 _ is strictly increasing and f(&,x) s

right continuous and X has a PF2,

X
Z¢
of the condition that E[¢ ] be log concave.

re

sity

] log

TP, and

3

decreasing density, we show that

T, has a PF2 density, 1In all of the above cases, we show the necessity

z
In addition, if E[¢ "] is IFRA for & € [0,1], if F(t,x)

TP2 and X has a PF2 density, we show that TX is IFRA,

2. Distribution Classes in Reliability Theory

In this section, we define some of the classes of distributions
used in reliability theory. Throughout, F and H will be distributions

on R" with F(0) = 0. f and h will be respectively the density

of F and H (when the distributions are absolutely continuous).

and H are respectively, 1-F and 1-H, F(n) is the nth fold con-

)

volution of F and f(n) the nth fold convolution of f,

will be a decreasing sequence of non-negative numbers with

(k)

P0 =

1.
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When appropriate, we will have

ae) - £ (g - F™ ey 2
n=0

A 3 *
F is said to be IFR if F(x+t)/F(t) is decreasing (when defined)
ie B =0 forsalls se =10,

If F( t)l/t

is decreasing in t >0, F is said to be IFRA,
It is well known that F IFR implies that F is IFRA,

F is discrete IFRA if the support of F 1is the non-negative
integers and f‘(n)l/n is decreasing in n (n an integer).
F is discrete IFR if the support of F 1is the non-negative

integers and {F(n)} 1is PF, (see next section) on the integers, A

sequence {an], n >0 is discrete PF2 if and only if an+1/an is :
decreasing in n. 4
If F is absolutely continuous, F IFR is equivalent to ;

r(t) = £f(t)/F(t) increasing in t >0 (F(t) > 0) for some version of

f.

3. Summary of Total Positivity

Consider any function K : X X Y —»IR, where X, YC IR, Define

. /B
j=1,...,P

AP(X) x OP(Y) where AP(X) 1is the set of all P-tuples (Xl,...,XP)

the function K[Pl(x,y) = detHK(xi, yj)Hizl,.. on the set

for which Xi < Xi+ i=1 P-1 and Xi € X. Define AP(Y)

1’ y sy

similarly,

*
Throughout, increasing (decreasing) means non-decreasing (non-increasing),
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Definition. K(x,y) 1is (strictly) totally positive of order r TP,

Definition. If K(x,y) is TP and admits a representation K(x,y) 1

(STP.) if K[P](i,iw) 20 (>0), P <, W% € 5PEYy ROP(Y). Af i

K(x,y) 1is TP, (STPr) of all orders, it is said to be TP (STP ).

i coay

= Pp(y-x), we say that @ is a Polya Frequency Function of order r

(PF).

A function is PF2 if and only if it is log concave, F is IFR

If F has a density f which is PF then

if and only if F is PF ~

o
F is IFR,

We now note some other characterizations of PF2 functions and

IFRA distributions, From [2], F is IFRA if and only if for each
At

Nt F(t) e has at most one change of sign, and if one change
of sign actually occurs, it occurs from + to -,

From (3], £ >0 is PF, on R’ if and only if for all a, 6

2 2D
fie). = ae-et changes sign at most twice, and if two sign changes occur,
they are in the order - + -, That is, f(t) - ae " goes from
negative to positive to negative,

Examples:
K(x,y) = e is STP_,
(1)




We now introduce the notion of variation diminishing, Let F(t)
be defined on I where I 1is an ordered set of the real line. For
our purposes, I will always be R",

Let

SR = aupst IRl ) F(t)],

i

where the sup is taken over tl < t2 SEolelleiice tm, ti € I, m arbitrary

and S-[xl, ) xk] is the number of sign changes of the sequence,

zeros being ignored.

T TR T Y
pres

Let K(x,y) defined on X X Y be Borel measurable, Assume

that [ K(x,y) du(y) exists for every x in X. u is taken to be
be

a sigma-finite regular measure on Y, Let f be bounded and Borel

measurable on Y and let

g(x) = {{ K(x,y) f(y) u(dy) .

31 The proofs of the following three theorems can be found in (4],

Theorem 1, If K is TPr and the above conditions are fulfilled,

then §7(g) < S (f) provided that S7(f) < r-1, j

|
4
] , Also, if f is piecewise continuous, then f and g exhibit

the same sequence of signs when their respective arguments traverse

the domain of definition from left to right,




Theorem 2. If K(x,y) is TP on (0,o] x (0,0] and integrable over
y with respect to a sigma-finite measure u on [O,m], then the

iterates, L(n,y) are TPr for ne 185 w0 ¥ 20, shete

L( I’Y) = K(o)y)
L(“,Y) = f L(n-l, £) K(ﬁ,y) du(e) ) ne= 2:3’)"’: e
0
Theorem 3. If K(g,Y) is TP _on X xY and L(T,n) is TP on Y XxZ,

where X Y and Z are subsets of the real line and ¢ 1is a sigma

finite measure on R, then
M(E,n) = [ K(E,T) L(T,n) do(T), tcX, nel
Y

is TP assuming the integrals converge absolutely,

min(m, r)

Lemma 1, If f 1is a PF, density concentrated on [o,w], and if F

2
is the associated distribution and F(n) the nth fold convolution of
F, then F(n)(t) - F(n+l)(t) is TP,. f(n)(t) is also TP,.

d¢ to see that

Proof. Apply Theorem 2 with K(x,y) = f(y-x), du(§)

£™ ey is TP,

Apply Theorem 3 with K(&,7) = f(7-§), L(T,m)

I
—
o
=}
o

do(t) = dT to see that 1 - F(t) is PF,.

Finally, note that the product of two TP2 functions is TP2 and

then apply Theorem 3 with K(¢,7) = (1 - F(g-r))1§>1 and L(T,n) = f(n)(T)

and do(7) = dr,

P T P —
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4, The Shock Renewal Process

Let us more formally consider the shock renewal process, In
continuous time, let Nt be the number of shocks which have arrived
by time t, and if we assume that shocks only come at integer times,
let Nn be the number of shocks which have arrived by time n,

Then for & € (0,1),

E[gNt]

I

E & BN - n)
n=0

5 e%E™ () - B (g

n=0

1 iél 5 F(“)(c) bor
n=1

t O 2 t 5o n=1
o (by bounded
=14+ L 2 ol F(n)(t) " convergence)
3 n=]l t S
0]
= 1e82d 3 0
E’ n=1
N¢ N¢
For ¢ =0, let E[§ "] = P(N_ = 0). Note that E[¢ ] is continuous

in &. Our major assumption through the remainder of the paper is

Nt Nn
that E[¢ ] (E[¢ ]) 1is either log concave (PF2) or IFRA (discrete

IFRA).




2 e AR SR B & D e R o AR DTS Lo i 0 A S PTG 743 0 S0, AR S o 0 WS4 9 K i i, Srach¥ 75 St AT b e SN B 0 L. P v

We list some examples below:

(1) Bf ElEt) = 1= e-xt, then '
3 N Y] n -?\t
3 t Lo n -At( 1-
: E(E ]=7‘,1_7‘_.)?_8_§=e)\( £)
% n=0 2
g (2) Let F(t) be a gamma distribution with rate 1 and parame ter 2,
Let f be the density of F, Let p2= g,
;. Ne e (n) 2n
k| Blg "J=-ts=——2T0 B (e)p ;
P n=1
Taking Laplace transforms with
9 N
-st t
gley = f o Ble °] ¢
(0]
2 o
5 =11 z
i gs) == 4 Bt Ll p 8E 5 pln) . PR
s 2 s
: P (0] =l
i
§
! 2- 2] o] A
s B L s (e gy Rt
s 2
P n=1 O
P2
2
2 B=b1 _(Les)
! e TR 2
P 1 (o
0 2
1 (1+s)
s [1 + (‘32- 1.) ]
i (l+s8) = p
1 9 L
1 2 - 2p 2p
; ==11 - .
r{ | S [ o (p 1) [(1+S)+D s (1+S)-D ] ] .
:
n
;E | % Reinverting,
-
2
X |
At - 10




o ¥, &

3
3
.
|

N

E[¢ ']

-(l-p)t -(1
e TR TR
A simple calculation will show that this function is log concave,

(3) Consider a rencwal process on the non-negative integers
with interval distribution F, where F(n) = 1 - pn, O<p<sl, q= l-p,
Such a process is Markovian. It can be shown that N S ; Sk where
the [Sk} are independent, identically distributed with ;?gk =0) = q,
P(Sk = 1) = p. Therefore,

n
BIE T = s ape e

n n
=q (1 + pt/q)
Clearly, E[¢ n] is a PF2 function on the non-negative integers,

(k) Let G{(n) = F(e)(n)’ where F is as in (3), If N, is

the discrete renewal process associated with Gy Chien

where {Sk} is as in (3), Letting p = ga, we have




O e A

G

e

N (n/2] g
T Sl . S R
k=0

[n/2]-1
o
k=0

1 n 2k+1 n-(2k+1
*% (ol Ducpey ek g Bk

n n
_ (pp+g) g(pp-.q) ,(1+_é) ’

This sequence is PF2.

Section 7 contains a discussion on how to construct distributions ;

N
for which E[¢ £Y ‘11 log concave,

Theorem 4, Let F have a density £ which is PF Then H 1is IFRA 4

Nt]l/t

2°

for all discrete IFRA sequences (P if and only if E[¢ is

i)
decreasing in t for all ¢ € [0,1].
Also, F(n)(t) - F(n+1)(t) TP, can replace the condition that

f be PF2,

Theorem 5. Let F be a distribution function whose support is the

positive integers and suppose that f(n) = F(n) - F(n-1) is PF2.

Then H(n) is discrete IFRA for all discrete IFRA sequences (Pk}

1/n

N
if and only if E[¢ n] is decreasing in n for all ¢ ¢ [0,1].

Theorem 6. Suppose that F(n)(t) - F(n+1)(t) is TP,, Then H(t)

3

N
is IFR for all PF2 sequences (P if and only if E[¢ t] is log

»

concave (PF,) for all ¢ ¢ [0,1],

2)




Theorem 7. Let F be a distribution function whose support is the

k+1)

positive integers and suppose that F(k)(n) - F( (mn) is TP,

2

Then H(n) is discrete IFR for all PF2 sequences (P if and only

)

N
if E[e 7] is PF, for all ¢ € [o0,1].

Theorem 8. Let Py = Pk = Pk-l’ k > 1, Suppose that f(n)(t) is TPB'

Then, H(t) has a PF2 density for all PF2, decreasing sequences [pk},
if and only if g(t,t) = § f(n)(t) " is log concave for all
gcfo,1]. =

Before we prove the above theorems, we must first prove a couple
of technical lemmas. Lemma 2 is needed for the proofs of Theorems 6
and 7 and Lemma 3 for Theorem 8,

First, we introduce the function,

N Wi N
8(E,ty, t,) = E[E 21/E[g 1) for € &0, 11, eyt 50,

1

Let k= inf{n > 0 : P(Nt = n) > 0}. We define
1

g(o0, s t2) Liw g(g, £, ¢

it

i)

N, =%k )/B(R =k },
Sy e Ay
(n) (ne1) .
Lemma 2, If F' /(t) - F (t) = P(Nt = n) 1is TP,, then for any
ty 2 t; 2 0 for which ﬁ(tl) > 0, there exists a & ¢ [0,1] for

which g(¢, €5 t2) = ﬁ(te)/ﬂ(tl)-




Proof. g(l, tl’ t2) =1 and g 1is continuous in § € [0,1].

if we can prove the existence of a ¢ € [0,1] for which
0 < gk, t,, tp) <HA(E)/B(t)) <1=g8(1, ¢, t;),

then by the continuity of g, the lemma is proved.

Now, g(0, 2T tg) = P(Nt2 = ktl)/P(Ntl = ktl), so it suffices

to show that g(0, t,, t;) < H(t,)/H(t,), that is,

)
Z
I

) ktl) f(t;) < A(ty) B(N 5 k :

BN =k JBHt)= § PN =k )PN =12)P
t2 tl 1 sk t2 tl tl L
t
1
Sney P(N =k ) PN =1¢)P
L>k R tp s
t
1
= PN, =k_) f(c,)
&y B 2

The inequality follows as P(Nt = k) is TP,.

The following lemma is proven in greater generality than needed
for this section., The more general form is needed for Section 8. The
reader can skip this proof for the moment and just refer to the corollary.

We will let | be some o-finite measure on 1R+, g some non-

negative, decreasing function on R* and f(t,x) some function on

RY xR* which is TP, on R' x A where A is the support of ., and

2

which is right continuous in x for each t,




[2¢] .
Lemma 3. For f, g, u as above, if [ f(t,x) p(dx) is decreasing
0

e thenifor o<t

2 1-— 2’
[ f(tp,x) £ u(ax) | [ £(t,,x) g(x) u(dx)
= lo 0
lim = 0
B U

[ f(e,x) £ w@x)| [ f(t),x) g(x) u(dx)
(0] 0

[ f(t,,x) £* 1(dx)

[ £(t,x) £F u(dx)

where we assume that all denominations are non-zero and all integrals

finite,

Proof. Let

i e e

Ve Uxy) = f(ta,x) f(tl,y) - f(te,y) f(tl,x) g

We will first prove the right-hand side inequality, As

E § lim [ f(t,x) £ w(dx) = [ £(t,x) u(dx) 2
b | E+ L0 (0]
3 :
E we must show that
i
E
| { o0 0
P [ f(ty,%) g(x) w(dx) [ £(t,,x) u(dx)
I 0
; :H i w0 o
b SJ f(ty,x) w(dx) [ £(t,x) g(x) w(dx) .
F e 0 0

15




b s AT o R ey

¥

o el el )

0> £ J U(x,y) (8(x) - g(y)) u(dx) v(dy)
y
U(x,y) g(x) p(dx) V(dy)

+ [ u(x,y) g(x) p(dx) v(dy) .
y>x>0

Substituting for U(x,y) and seperating each of the above integrals

gives us the desired inequality.

Now, we consider the left-hand side of the inequality, Let

k(t) = inf{x > O}fx £(t,x) p(ds) > 0}
0

1f p({k(tl)}) > 0, the inequality follows immediately from the fact

that £(t,x) is TP, and g(x) > 0. Suppose that p([k(tl)}) e

foo £(ty,x) & u(dx) i(t ; £(t,,x) ) rax)
m ) = lim 1
Eio (f:o £(t,,x) " 1u(dx) £ 40 -L(:t) () gx-k(tl) sl dx)
1
k(t))+e
Lo g 5
i SR k(tl)+€
€ LOE 1O i(tl) f(tl’ ) gx-k(tl) u(dx)
1

f(tg, k(tl) + €)
- P W T By S

16
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As f is TPE’

/ H(th,%) 8(x) u(dx)
f(te,k(tl)+e) k(t;)+e

f(tl,k(t1)+€) =

f(tl,x) g(x) M(dx)
k(t1)+€

Letting € -0 on both sides, and noting the above string of inequalities

shows that

oo oo

E(tp,%) 8" u(dx) [ £(ty,x) g(x) u(dx)
< 0

=

—

li
‘

(4]

RS ey gt [ #e),x) 8(x) u(dn)

Q4

as required,

We will now prove the needed corollary, Let Py be a decreasing

non-negative sequence, Let f(t) be the density of some non-negative

random variable,

Corollary. 1If f(n)(t) is TP,, then for any

there exists a ¢ ¢ [0,1] such that

£, < t, [pk} decreasing,

w (k o0 (k Kk
h( t2) kgl : )( t2) pk IZI : : : t2) 4
h( tly T 3

z £k

o %) k
(t,) p 5 (t,) ¢
k-1 AL S e :

17
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Proof. We can apply Lemma 3 with g(k) = Pys £(t,n) = f(n)(t) and u

counting measure on the positive integers,

and f to R" xR' in an appropriate manner,

Co

k) k
g
k=1 2
M SHeg =
E L O 5 f(k)(tl) §k 1
k=1

lim

gl

We can extend g to

By Lemma 55

?1 £8)(e,) ¢

7 otelas gk
k=1

o
The corollary follows by the continuity of f(k)(t) gk in E.
k=1

Proof of Theorem L.

A(e) = ¢ (F™(e) - F(7+) (1)) P
n=0
Ao - ele = T (Ve - e D) (b g
n=0

As P;/n decreases by assumption, the sign of P ™ g" changes
sign at most once, and if so, from + to -, As f is PF2,
F(n)(t) - F(n+1)(t) is TP, by Lemma 1. So, by Theorem 1, f(t) - E[gNt]
has at most one sign change and if it does change sign, it is from
+ to -,

We suppose that H(t) = 1 - H(t) 1is not IFRA., It then follows
from [2 ], p. 89, that there exists a 0 < §o <1 and a t. for

0

which H(t) crosses 53 from below at t = o Now

Neo
lim E(¢t Y] = P(Nt = 0) < H(to)
£+ 0 0

18




N N =
As E[f t; is continuous in ¢ and E[1 t] = 1>H(t), it follows

N
that there exists a £, € [0,1] for which E[g1

Wi rnilie it Syt o

t
0] - fi(ey) = ¢ L.

R S

Nt]l/t
1

Ne N¢
As E[t is decreasing (1 - E[g1 ] is IFRA), E[g1 ]

has a downcrossing with respect to gg at t= to.
3 N
Therefore, H(t) crosses E[glt] from below at ¢t = ty- So
2 N
| the sign of H(t) - E[glt] goes from - to +. This is a contradiction,
1
{
so H(t) must be IFRA,
=5 We are given then H(t) is IFRA for all sequences {Pk] where
i 1/k ; k
E | 1= PO-: Pl‘Z Gy Pk decreasing. Let Pk =%, 05¢ £.1,

| ie) = T (W) - K™D ) ¢ o pe™
g | n=0

N N
So 1-E[¢ ") is IFRA (E[¢ ty1/t decreasing) as H is IFRA,

# 19
13
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Proof of Theorem 5.

&= f(n) = F(n+l) - F(n) is PF, by assumption, By Lemma 1,
f(k)(n) is TP,,
> v g(k)
ﬁ(n) = Z P(N = k) Pk = Z f (n) Pk s
k=g P k=0
N o0
- k k
Be) - Bt "1 = T £ (2 - 8%
k=0
Pk - §k changes sign at most once and in the order + to -. There-

N
fore, by Theorem 1, H(n) - E[¢ i changes sign at most once and in
the order + to -.
Suppose fi(n) is not discrete IFRA, Then we can find a

n +1
- 0 -
£o € [0,1) and an n_ > 0 for which H(no) <, and H(no+1) - el

0

We can, as in the previous proof, assert that there exists a £, € (o,1]

N -
g O > H(ng) .

N N
As E[glno] < §;° and E[é1

"o
for which §o > E[¢&

n] l/n Nn0+1 no+1

is decreasing, E[g1 Jhe go &

N ik
E[gln] goes below H(n) at n = no+1. That is, the sign of

4 N
H(n) - E[gln] changes from + to - as n goes from no to n o+l

= Let Pn = gn and proceed as in Theorem 5,

Proof of Theorem 6,

H(t) = ; [F(n)(t) - F(n+l)(t)] P
n=0
A(c) - aE(t ©- EO (F (e - #(™D(e)) (2 - ag?
N=

n

As {Pn} is PF2, Pn+1/Pn is decreasing, so the sign of Pn - at

changes at most twice and in the order - 4+ -, As F(n)(t) - F(n+1)(t)

20
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= N
is TP5’ we can assert by Theorem 1 that the sign of H(t) - aE[¢ o

changes sign at most twice and in the order - + -,

R T s

We know that H is IFR if and only if for any a and g, the

number of sign changes of H(t) - agt number at most two, and if there

A DB s

are two, they are in the order - 4+ -,

Let us suppose the contrary, That is, assume that there exists

> g

an a, ¢ for which the sign of H(t) - agt goes from - to 4+ to -,

Refer to the below diagram. By Lemma 2, we can find a b, gl with

Ntl] t1 to

4 e : Be. -
bg[gl = at " = H(tl)’ bE[g1 ] = a = = H(t As DbE[E "] is

2)-

N
3 log concave by assumption, we have that for t1 <t < t2, bE[Elt].E agt.

It is clear that there exists ta’ tb’ tcﬁ ta < t1 (< tb < t2 < tc for

N
: 5 = ta = tp = Ntc
1 which u(:a) - bE[g1 ] >o0, H(tb) < bE[gl ], and H(tc) > bE[g1 1
This, however, is in contradiction to the initial result about the

N
sign change pattern of H(t) - aE[¢ t] for all a,t. S0 H is IFR,

n
= Again, let Pn =& and the converse is immediate,

\

H(t)
v




il ataig

Proof of Theorem 7.

& A review of Lemma 2 shows that it is still applicable for

discrete time,

oo o
o) = & F 9@ - e myje - 5 M) B
k=0 k=0
N © ]
y & k) k
fi(n) -~ sEfe "1 = % £%p (B - at")
k=0
As Pk - agk changes sign at most twice, and in the order - 4+ -,

" N
and as f(k)(n) is TP5, then by Theorem 1, H(n) - aE[t¢ ] changes

sign at most twice and in the order - + -.

We suppose that H(n) is not PF,, or equivalently that there
exists constants a',gd, ny, Ny, n5, where ny << n, < n5 are integers
2 n 1 = ; ng: n5
L 1 1 L] f 1 !
for which H(nl) >ales H(n,) < a Eo s H(ni) >at g0

s

Making use of the fact that any two exponential curves cross

at most once, we can find a new pair of constants, a and €o> for which
nl 2
)

- - n - n3
H(nl) = ag,", H(ne) < ag, H(nz) = ag”.

As in the previous theorem, using Lemma 2, we find a b, gl,

N n N i
with bE[glnl] = H(n bE[g1“5] = H(n We proceed as in the pre-

5)'

vious theorem to get a contradiction, So H(n) 1is PF

1

o
= Let P = ¢

Proof of Theorem 8,

& Let h be the density of H,




Proof. The proof of this theorem can be found in [4].

h(c) = 51 ey p

h(e) - ag(e,8) = T E£V(0) (2 - at®)
N=

We now have the same setup as in Theorem 6. We now may use the

Corollary to Lemma 3 in the identical way that we used Lemma 2 in

the proof of Theorem 6.

= Let pk=1—‘§'-§-- e

N
t
7. Densities for Which E[¢ ] is log Concave

As was mentioned earlier, the question of finding distributions
with the properties required in Theorems 4 through 8 is formidable,
N
Below, we identify a class of densities for which E[§ t] is log

concave,

Definition., Let &, be the set of functions Q on [0,o] with the

: co ©o
representation Q(s) = (e68 e 3T RiS), N 2O, ik N Sw,

n=1 i=1

5 >0, k a non-negative integer and Q(0) = C,

Theorem 9. h(u) is a PF_ function on (0,0] if the reciprocal of

the Laplace transform of h is in €-
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g Note that

é

o n

% Q(s) = I (?\i+5)/n A,
1 ok
F

) n

A =1 (1+ /N :8)
§ : :

.

o

is the reciprocal of the Laplace transform of the convolution of n
exponential densities with rates ?\i.

': Nt
E Let G(t,t) = L - E[¢ 1.

Theorem 10. Let F have a density £:G(t,t) has a PF_ density

q(t,t), for &€ [0,1}) if the Laplace transform of f has a reciprocal

n n n n
of the form I (A.+s)/IIA, and ( I (A.,+s) - I A,) has all real
B S e g f=1
roots,
Proof.
ia ©
g L) =S T i e
1 n=1
Let
| cqfs,8) = J €% q(t,8) dt
] : 0
<
E | £(s) = [ e %% £(t) de
E | o 5
{
Then,
1-¢ fo(®)t
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2 ]

At

T s

B

i;

We want to show that gq(t,g) is a PF_ density, and as it is clearly
a density, it suffices by Theorem g to show that q&l(s,g) is in 81

for all ¢ € [0,1),

G (5,8) = 7o (G(s) - &)

I

1 ; = "
Tt (H(%i+s) - & .H ki) ('Z Ki) .

i=1 i=1

I}

n
-1 Ay i
Now, q, (s,t) is in e if ﬂg(s) = H(Ki+s) -t ifl Ai has all
real, non-positive roots., For E € fo,1], ¢§(s) >0 for s >0,
So bg(s) has no positive roots. An inspection of the polynomial ﬂg

will show that pg has all real roots for & € [0,1] if and only if

has all real roots,
1

Corollary. Let f be the corvolution of two exponential densities,

Then q(t,t) is PF_ for & '€ [0, 1},

Beaof, i, (o, k) = 2 (Onim) (Moudlon € % AR A S,

We need to sec if @(s) = (A1+s) (Asts) - MM, has all real
roots ﬂl(s) = 8(8 & AL + A,), so the conditions of Theorem 10 are

satisfied,

Note: The result in Theorem 10 only holds for ¢ ¢ (0,1), but it can
easily be extended to the case of ¢ = 1 by continuity or by noting

that q(t,t) =0 for ¢ =1,




8. Stochastic Wear Processes

In [6], Morey introduces a class of non-decreasing stochastic

processes, which he called stochastic wear processes (SWP), {Zt, t > 0} :

is a SWP if P(Zt < Xx) 18 TP, in t and x, Z  is increasing and

Zt is non-negative,

Morey shows that if Zt is a SWP with stationary independent

1

i

increments, then the random variable Tx defined as inf{t > Oth > x}
is an IFR random variable, He further asserts that for any non-negative

random variable x, Tx is also IFR, The latter result is not true,

Simply take Zt to be identically t, note that P(Zt <x)= l[tf’d

which is TP2 and therefore Zt is a SWP with stationary, independent

increments. Also, P(T

X'S t) = P(Zt >X) = P(X<t), so T, IFR implies

X
that X is IFR, which is clearly not true in general,

From now on, we will be considering a non-decreasing stochastic
‘ process Z  with Z0 =0, B(t,x) = P(Zt < x) and f(t,x) the density

of F for each t (if it exists).

We will prove the analogues of Theorems 4 through 8 for processes
which can take values on all of R',
First, we need the following lemma which is similar to Lemmas 2

and 3,

i oo
, Lemma L. Suppose that F(t,x) is TP,, 9 >0 and P(t) = [ F(t,x) g(x)dx.
1 g x=0 3
, i Then, for all £ & t,, 3
|
1
| 0 ~ i
1 i F(t,,x) £ dx o) f_o F(ty,x) & dx
| lim - < lim — .
; £ 40 L7 Rl W2 PG X

2y / F(t),x) £ dx / F(tl,x) £" dx
| & = x:o
& . 26




3 Proof. The left-hand side of the inequality follows by Lemma 3,
% ATy
:‘i
i Now, f( t2) _Sﬁ)(tl) as F(t2,x) £ F(tl,x). Also
1
1 ) © ©
: ] F(eyx) £%dx =/ [ £(t,u) £* du dx 1
; x=0 x=0 u=0 ‘
0 (o] u
=J [ f(t,u) & &Y dudx
u=0 x=u
oo oo :
=/ [ f(u,e) £ e¥ dy du |
u=0 y:o
z
- -1/ Ee "] .
So, 1
o X
J EB(ty,x) &7 dx z
27 t2
lim |20 - Agy aldnd E[Eztl] it
£t lf F(t,,%) £X dx E t1-1/ln¢ E[¢ 1]
x=0
E'; Let G(x) = P(X <x), G(x) = 1 - G(x). Let g(x) be the
density of G. Let H(t) = P(T >¢t), H(t) = 1 - H(t). Let h(t)
; be the density of H(t) (if it exists). Then, 3
‘ 1) fi(t) = B(T>t) =/ F(t,x) g(x) dx.
E | x=0 !
1 ii) H(t) = (T>¢) = [ £(t,x) &x) dx. ~
=

1f Zt is strictly increasing in ¢t

)

iii) h(t) = fm £(t,x) g(x) dx.
,5; x=0

At ool




Theorem 11. If F(t,x) is TP,, then H(t) is PF, (H is IF | for

R

2
: : Le o gl - i . .
! all g PF, if and only if E[¢ "] = - | f(t,x) £ dx (1ln ¢ is
4 v x-0
; log concave in t for all ¢ ¢ [o,1]. |
| |
f |
1 PrOOf. |
N (L ¢ x x X [
1 H(t) - a [ F(t,x) & dx [ Fle.x} (g(x) at dx
x=0 x=0
¥ X
A(t) - a [ F(t,x) €7 dx changes sign at most twice and in the
4 x=0
| order - + - as g(x) is PF, and F(t,x) is TPS (Theorem 1), Now,
apply Lemma 4 and argue as in Theorem 5, 2
= Let g(x) = §x.
it = X
Note that E[¢ "] 1is log concave if and only if [ F(t,x) & dx
x=0
is log concave,
We state the next three theorems without proof, They each
depend either on Lemma 3 or Lemma L.
{ Theorem 12, Let f(t,x) be right continuous for each t and TP.. Then,
4 H(t) 1is log concave (H is IFR) for all {&(t) PF, if and only if
i 2
; E[€ t] is log concave for all ¢ ¢ [0,1],

1 Theorem 15. Suppose that Zt is strictly increasing, Let £(t,x)
P |

be right continuous for each t and TP5, Then, h(t) is PF2 for

Z
all g(t) PF,, and decreasing, if and only if E[& t] is log

{ concave for all & ¢ [0,1],

g LR .
o T 25
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Theorem 1;. Let f(t,x) be right continuous and TP2. Then H(t)

Z
is IFRA for all G(t) IFRA if and only if E[¢ t]l/t is decreasing,

Example. Let N = be a non-homogenous Poisson Process with E(Nt) = AN t),

Consider the compound renewal process whose orrival process is Nt and
whose jump size distribution is M with M/0) - 0. Assume that M

has a density m, Let 'rn be the size of the nth jump, Let

N
Ay : £
P if B >3
k=1 x $
z:
&
0, if N =0

Then

00 k
R R T P Elk—?)mM(n)(x)

Let F(t x) - P(ZCSx). Let f(t,x) be the density of F on (0,].

s

We have

o k 3
f(t,x) = 2 e'“<t) %((—%Lm(‘n)(x) x>0 . 1

’
n=1

k
Suppose m(x) is PF,. Then m(n)(x) is TP,. Since e'“(t)ﬂLl';L

is TP , we know by Theorem 3 that f(t,x) is TP5 on t>0, x>0,

S

Extend f(t,x) to t >0, x >0 so that it is still TP5. Now,

th " e-A(t)(1~m§) =

where m, = [ m(x) ¥ dx .
x=0

=1
—
v

So E[t | 1is log concave if A(t) is convex,

29
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Therefore, by Theorem 12 if A is convex and m PF%, the

hitting time distribution of ZL to any random barrier with an IFR

distribution is IFR.

9. Markov Processes

The questions we have been asking about hitting time distri-
butions have very simple answers if the process is Markovian and

spatially homogeneous. All of the below is taken directly from [5].

Henceforth, Zt

- » lz -
We let ﬂt(s,x) be the density of P(Zt+w < xiZ = 0).

Theorem 15. If ﬁt(s,x) is TP, in s and x for each t and if
o]

f(x) 1is PF,, then c(t) = é po(t,x) f(x) dx is PF,,.

Proof.
c(tes) = [ ﬂo(t+s, x} £(x) dx
0
w X
=1 By(t,8) B(s, x-t) £(x) o
0 O

=] b(c,e)fmb(,u)fug du dg
¢ Fo . Pyl (u+t)

As f is PFg, f(ust) 1is RR, (see [4]). By a slight extension of
¢ 2
Theorem 3 (see [ 4]), é ﬂt(s,u) f(utt) du is RRZ’ so as ﬁo(t,g)

is TP,, by Theorem 3, c(t+s) is RR,. But c(t4s) RR, implies that

is a Markov Process, which is spatially homogeneous,

A

il e il s
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c(t) is PFE' Using Theorem 15, we can get the same results as in

Section 8 for temporally homogeneous Markov Processes with fewer

and weaker assumptions. Note that for appropriate choices of foc

can be interpreted as the hitting time distribution or density of the

R e o

o

Markov process to a random barrier.

il
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